261 research outputs found

    An integrated genomic approach for the study of mandibular prognathism in the European seabass (Dicentrarchus labrax)

    Get PDF
    Skeletal anomalies in farmed fish are a relevant issue affecting animal welfare and health and causing significant economic losses. Here, a high-density genetic map of European seabass for QTL mapping of jaw deformity was constructed and a genome-wide association study (GWAS) was carried out on a total of 298 juveniles, 148 of which belonged to four full-sib families. Out of 298 fish, 107 were affected by mandibular prognathism (MP). Three significant QTLs and two candidate SNPs associated with MP were identified. The two GWAS candidate markers were located on ChrX and Chr17, both in close proximity with the peaks of the two most significant QTLs. Notably, the SNP marker on Chr17 was positioned within the Sobp gene coding region, which plays a pivotal role in craniofacial development. The analysis of differentially expressed genes in jaw-deformed animals highlighted the "nervous system development" as a crucial pathway in MP. In particular, Zic2, a key gene for craniofacial morphogenesis in model species, was significantly down-regulated in MP-affected animals. Gene expression data revealed also a significant down-regulation of Sobp in deformed larvae. Our analyses, integrating transcriptomic and GWA methods, provide evidence for putative mechanisms underlying seabass jaw deformity

    Messinian salinity crisis and the origin of freshwater lifestyle in western Mediterranean gobies.

    Get PDF
    The present paper reports on a molecular study based on 12S rRNA and 16S rRNA mitochondrial genes partly sequenced in 13 species of western Mediterranean gobies, three of which are strictly freshwater-dwelling. A total of 867 bp were aligned and used for the phylogenetic reconstruction. Two major lineages were identified, one clustering the sand gobies in a monophyletic clade. Relationships among taxa based on sequence analysis only partly match those based on morphological criteria, suggesting that the latter are somehow insufficient to correctly establish phylogenetic relationships within this family. The results provide evidence for a multiple independent evolution of the freshwater lifestyle in Knipowitschia and Padogobius lineages. On the basis of the present results, it is uncertain whether the freshwater preference within the genus Padogobius originated twice independently in P. nigricans and P. martensii or only once in their common ancestor. Estimation of the ages of the two major lineages of this group of fish with a molecular clock (in combination with the construction of a linearized tree) suggests that they are much older (at least 40 Myr) than previously thought. Thus, there should be no correlation between their diversification and the Miocene-Pliocene geological events, including the so-called Messinian salinity crisis, which occurred about 10 MYA and is believed to have played a role in their evolution. Alternatively, these gobies would have an evolutionary rate at least fourfold faster than those of other vertebrates

    A Microarray study of Carpet-Shell Clam (Ruditapes decussatus) shows common and organ-specific growth-related gene expression Differences in gills and digestive gland

    Get PDF
    Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG) were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC), i. e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/ insulin-like growth factor signaling pathway (IIS), enzymes of four additional signaling pathways (Raf/ Ras/ Mapk, Jnk, TOR, and Hippo), and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in themicroarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO) annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO termenrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others, some genes related to the IIS, such as the ParaHox gene Xlox, CCAR and the CCN family of secreted proteins, in the regulation of growth in bivalves.Direccion General de Investigacion Cientifica y Tecnica of the Spanish Government [AGL2010-16743, AGL2013-49144-C3-3-R]; COMPETE Program; Portuguese National Funds [PEst-255 C/MAR/LA0015/2011]; Portuguese FCT [UID/Multi/04326/2013]; Generalitat Valenciana; Ministry of Education, Culture, and Sports of the Spanish Government; Association of European Marine Biology Laboratoriesinfo:eu-repo/semantics/publishedVersio

    Exploring the larval transcriptome of the common sole (Solea solea L.)

    Get PDF
    open7noBackground The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. Results The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. Conclusions Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth. Keywords: Solea solea; Flatfish; Larval development; Metamorphosis; Transcriptome; Gene expressionopenSerena Ferraresso; Alessio Bonaldo; Luca Parma; Stefano Cinotti; Paola Massi; Luca Bargelloni; Pier Paolo GattaSerena Ferraresso; Alessio Bonaldo; Luca Parma; Stefano Cinotti; Paola Massi; Luca Bargelloni; Pier Paolo Gatt

    Transcriptional profiling of populations in the clam Ruditapes decussatus suggests genetically determined differentiation in gene expression along parallel temperature gradients and between races of the Atlantic ocean and west Mediterranean sea

    Get PDF
    Ongoing ocean warming due to climate change poses new challenges for marine life and its exploitation. We have used transcriptomics to find genetically based responses to increased temperature in natural populations of the marine clam Ruditapes decussatus, which lives along parallel thermal gradients in southern Europe. Clams of the Atlantic and West Mediterranean races were collected in northern (cool) and a southern (warm) localities. The animals were kept in running seawater in the warm, southern Atlantic locality for a 15-week period. During this period, water temperature was raised to typical southern European summer values. After this period, an expression profile was obtained for a total of 34 clams and 11,025 probes by means of an oligonucleotide microarray. We found distinct transcriptional patterns for each population based on a total of 552 differentially expressed genes (DEGs), indicating innate differences which probably have a genetic basis. Race and latitude contributed significantly to gene expression differences, with very different sets of DEGs. A gene ontology analysis showed that races differed mainly in the genes involved in ribosomal function and protein biosynthesis, while genes related to glutathione metabolism and ATP synthesis in the mitochondria were the most outstanding with respect to north/south transcriptional differences.Grant AGL2010-16743;info:eu-repo/semantics/publishedVersio

    Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The European sea bass (<it>Dicentrarchus labrax</it>) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for <it>D. labrax</it>.</p> <p>Results</p> <p>A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and <it>in-situ </it>synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant.</p> <p>Conclusions</p> <p>The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon.</p

    An innovative index to incorporate transcriptomic data into weight of evidence approaches for environmental risk assessment

    Get PDF
    The sharp decrease in the cost of RNA-sequencing and the rapid improvement in computational analysis of eco-toxicogenomic data have brought new insights into the adverse effects of chemicals on aquatic organisms. Yet, transcriptomics is generally applied qualitatively in environmental risk assessments, hampering more effective exploitation of this evidence through multidisciplinary studies. In view of this limitation, a methodology is here presented to quantitatively elaborate transcriptional data in support to environmental risk assessment. The proposed methodology makes use of results from the application of Gene Set Enrichment Analysis to recent studies investigating the response of Mytilus galloprovincialis and Ruditapes philippinarum exposed to contaminants of emerging concern. The degree of changes in gene sets and the relevance of physiological reactions are integrated in the calculation of a hazard index. The outcome is then classified according to five hazard classes (from absent to severe), providing an evaluation of whole-transcriptome effects of chemical exposure. The application to experimental and simulated datasets proved that the method can effectively discriminate different levels of altered transcriptomic responses when compared to expert judgement (Spearman correlation coefficient of 0.96). A further application to data collected in two independent studies of Salmo trutta and Xenopus tropicalis exposed to contaminants confirmed the potential extension of the methodology to other aquatic species. This methodology can serve as a proof of concept for the integration of “genomic tools” in environmental risk assessment based on multidisciplinary investigations. To this end, the proposed transcriptomic hazard index can now be incorporated into quantitative Weight of Evidence approaches and weighed, with results from other types of analysis, to elucidate the role of chemicals in adverse ecological effects

    Functional Evolution of Clustered Aquaporin Genes Reveals Insights into the Oceanic Success of Teleost Eggs

    Get PDF
    Aquaporin-mediated oocyte hydration is considered important for the evolution of pelagic eggs and the radiative success of marine teleosts. However, the molecular regulatory mechanisms controlling this vital process are not fully understood. Here, we analyzed >400 piscine genomes to uncover a previously unknown teleost-specific aquaporin-1 cluster (TSA1C) comprised of tandemly arranged aqp1aa-aqp1ab2-aqp1ab1 genes. Functional evolutionary analysis of the TSA1C reveals a ∼300-million-year history of downstream aqp1ab-type gene loss, neofunctionalization, and subfunctionalization, but with marine species that spawn highly hydrated pelagic eggs almost exclusively retaining at least one of the downstream paralogs. Unexpectedly, one-third of the modern marine euacanthomorph teleosts selectively retain both aqp1ab-type channels and co-evolved protein kinase-mediated phosphorylation sites in the intracellular subdomains together with teleost-specific Ywhaz-like (14-3-3ζ-like) binding proteins for co-operative membrane trafficking regulation. To understand the selective evolutionary advantages of these mechanisms, we show that a two-step regulated channel shunt avoids competitive occupancy of the same plasma membrane space in the oocyte and accelerates hydration. These data suggest that the evolution of the adaptive molecular regulatory features of the TSA1C facilitated the rise of pelagic eggs and their subsequent geodispersal in the oceanic currents.info:eu-repo/semantics/publishedVersio

    Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata)

    Get PDF
    Aquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture

    Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam

    Get PDF
    The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves
    corecore